9 research outputs found

    Finite element modelling of the foot for clinical application: A systematic review

    Get PDF
    Over the last two decades finite element modelling has been widely used to give new insight on foot and footwear biomechanics. However its actual contribution for the improvement of the therapeutic outcome of different pathological conditions of the foot, such as the diabetic foot, remains relatively limited. This is mainly because finite element modelling is only been used within the research domain. Clinically applicable finite element modelling can open the way for novel diagnostic techniques and novel methods for treatment planning/optimisation which would significantly enhance clinical practice. In this context this review aims to provide an overview of modelling techniques in the field of foot and footwear biomechanics and to investigate their applicability in a clinical setting. Even though no integrated modelling system exists that could be directly used in the clinic and considerable progress is still required, current literature includes a comprehensive toolbox for future work towards clinically applicable finite element modelling. The key challenges include collecting the information that is needed for geometry design, the assignment of material properties and loading on a patient-specific basis and in a cost-effective and non-invasive way. The ultimate challenge for the implementation of any computational system into clinical practice is to ensure that it can produce reliable results for any person that belongs in the population for which it was developed. Consequently this highlights the need for thorough and extensive validation of each individual step of the modelling process as well as for the overall validation of the final integrated system

    A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma

    Get PDF
    Pathological conditions such as diabetic foot and plantar heel pain are associated with changes in the mechanical properties of plantar soft tissue. However, the causes and implications of these changes are not yet fully understood. This is mainly because accurate assessment of the mechanical properties of plantar soft tissue in the clinic remains extremely challenging.To develop a clinically viable non-invasive method of assessing the mechanical properties of the heel pad. Furthermore the effect of non-linear mechanical behaviour of the heel pad on its ability to uniformly distribute foot-ground contact loads in light of the effect of overloading is also investigated.An automated custom device for ultrasound indentation was developed along with custom algorithms for the automated subject-specific modeling of heel pad. Non-time-dependent and time-dependent material properties were inverse engineered from results from quasi-static indentation and stress relaxation test respectively. The validity of the calculated coefficients was assessed for five healthy participants. The implications of altered mechanical properties on the heel pad's ability to uniformly distribute plantar loading were also investigated in a parametric analysis.The subject-specific heel pad models with coefficients calculated based on quasi-static indentation and stress relaxation were able to accurately simulate dynamic indentation. Average error in the predicted forces for maximum deformation was only 6.6±4.0%. When the inverse engineered coefficients were used to simulate the first instance of heel strike the error in terms of peak plantar pressure was 27%. The parametric analysis indicated that the heel pad's ability to uniformly distribute plantar loads is influenced both by its overall deformability and by its stress-strain behaviour. When overall deformability stays constant, changes in stress/strain behaviour leading to a more "linear" mechanical behaviour appear to improve the heel pad's ability to uniformly distribute plantar loading.The developed technique can accurately assess the visco-hyperelastic behaviour of heel pad. It was observed that specific change in stress-strain behaviour can enhance/weaken the heel pad's ability to uniformly distribute plantar loading that will increase/decrease the risk for overloading and trauma

    Viscoelasticity in Foot-Ground Interaction

    Get PDF
    Mechanical properties of the plantar soft tissue, which acts as the interface between the skeleton and the ground, play an important role in distributing the force underneath the foot and in influencing the load transfer to the entire body during weight-bearing activities. Hence, understanding the mechanical behaviour of the plantar soft tissue and the mathematical equations that govern such behaviour can have important applications in investigating the effect of disease and injuries on soft tissue function. The plantar soft tissue of the foot shows a viscoelastic behaviour, where the reaction force is not only dependent on the amount of deformation but also influenced by the deformation rate. This chapter provides an insight into the mechanical behaviour of plantar soft tissue during loading with specific emphasis on heel pad, which is the first point of contact during normal gait. Furthermore, the methods of assessing the mechanical behaviour including the in vitro/in situ and in vivo are discussed, and examples of creep, stress relaxation, rate dependency and hysteresis behaviour of the heel pad are shown. In addition, the viscoelastic models that represent the mechanical behaviour of the plantar soft tissue under load along with the equations that govern this behaviour are elaborated and discussed

    Chapter Viscoelasticity in Foot-Ground Interaction

    Get PDF
    Dynamical models of robots performing tasks in contact with objects or the environment are difficult to obtain. Therefore, different methods of learning the dynamics of tasks have been proposed. In this chapter, we present a method that provides the joint torques needed to execute a task in a compliant and at the same time accurate manner. The presented method of compliant movement primitives (CMPs), which consists of the task kinematical and dynamical trajectories, goes beyond mere reproduction of previously learned motions. Using statistical generalization, the method allows to generate new, previously untrained trajectories. Furthermore, the use of transition graphs allows us to combine parts of previously learned motions and thus generate new ones. In the chapter, we provide a brief overview of this research topic in the literature, followed by an in-depth explanation of the compliant movement primitives framework, with details on both statistical generalization and transition graphs. An extensive experimental evaluation demonstrates the applicability and the usefulness of the approach

    Localised pressure stimulation using turf-like structures can improve skin perfusion in the foot

    Get PDF
    Objective: Improving perfusion under the skin can potentially reduce ulceration and amputation risk in people with diabetic foot. Localised pressure stimulation has been proven capable of improving skin perfusion in the scalp but its effectiveness for the foot has not been tested. In this study, localised pressure stimulation was realised using flexible turf-like structures with dense vertical fibres and their ability to increase perfusion was assessed. Methods: The skin in the rear-foot, mid-foot and forefoot of nine healthy volunteers was stimulated using two turf-like structures with different stiffness and one wound filler material that generated a uniform compression. Changes in perfusion were assessed using laser speckle. Results: Mechanical stimulation significantly increased perfusion in the forefoot and mid-foot areas with the turf-like structures achieving higher and more long-lasting increase compared to the wound filler. The stiffer of the two turf-like structure appeared to be the most effective for the forefoot achieving a significant increase in perfusion that lasted for 25.5s immediately after stimulation. Conclusion: The results of this study indicate that localised pressure stimulation is a more effective compared to uniform compression for improving skin perfusion in the healthy foot. Further research in people with diabetic foot disease is needed to verify the clinical value of the observed effect

    Shear wave elastography can assess the in-vivo nonlinear mechanical behavior of heel-pad.

    Get PDF
    This study combines non-invasive mechanical testing with finite element (FE) modelling to assess for the first time the reliability of shear wave (SW) elastography for the quantitative assessment of the in-vivo nonlinear mechanical behavior of heel-pad. The heel-pads of five volunteers were compressed using a custom-made ultrasound indentation device. Tissue deformation was assessed from B-mode ultrasound and force was measured using a load cell to calculate the force - deformation graph of the indentation test. These results were used to design subject specific FE models and to inverse engineer the tissue's hyperelastic material coefficients and its stress - strain behavior. SW speed was measured for different levels of compression (from 0% to 50% compression). SW speed for 0% compression was used to assess the initial stiffness of heel-pad (i.e. initial shear modulus, initial Young's modulus). Changes in SW speed with increasing compressive loading were used to quantify the tissue's nonlinear mechanical behavior based on the theory of acoustoelasticity. Statistical analysis of results showed significant correlation between SW-based and FE-based estimations of initial stiffness, but SW underestimated initial shear modulus by 64%(±16). A linear relationship was found between the SW-based and FE-based estimations of nonlinear behavior. The results of this study indicate that SW elastography is capable of reliably assessing differences in stiffness, but the absolute values of stiffness should be used with caution. Measuring changes in SW speed for different magnitudes of compression enables the quantification of the tissue's nonlinear behavior which can significantly enhance the diagnostic value of SW elastography. [Abstract copyright: Copyright © 2018 Elsevier Ltd. All rights reserved.

    A Simulation of the Viscoelastic Behaviour of Heel Pad During Weight-Bearing Activities of Daily Living

    No full text
    Internal strain is known to be one of the contributors to plantar soft tissue damage. However, due to challenges related to measurement techniques, there is a paucity of research investigating the strain within the plantar soft tissue during daily weight-bearing activities. Therefore, the main aim of this study was to develop a non-invasive method for predicting heel pad strain during loading. An ultrasound indentation technique along with a mathematical model was employed to calculate visco-hyperelastic structural coefficients from the results of cyclic-dynamic indentation and stress-relaxation tests. Subject-specific structural coefficients of heel pads were calculated from twenty participants along with the assessment of plantar pressure. The average difference between the predicted and the measured force during the cyclic-dynamic indentation test was only 5.8%. Moreover, the average difference between the predicted and the in vivo strain during walking was 14%. No statistically significant correlation was observed between maximum strain and peak plantar pressure during walking; indicating that the measurement of strain along with plantar pressure can improve our understanding of the mechanical behaviour of the plantar soft tissue
    corecore